
Fuzzy-Based Classification of Breast Lesions Using
Ultrasound Echography and Elastography

Shirley Selvan, ME,* M. Kavitha, ME,* S. Shenbaga Devi, ME, PhD,* and S. Suresh, MBBS, FRCOGÞ

Abstract: Common breast lesions have different elasticity proper-
ties. Segmentation of contours of breast lesions from elastography
and B mode images by incorporating variational level set method is
involved in the proposed work. After segmentation, strain and shape
features, such as differences in area, perimeter, and contour and
width to height difference and solidity, as well as texture features
like contrast, entropy, standard deviation, dissimilarity, homogeneity
and energy, are estimated. A nonlinear fuzzy inference system is ap-
plied for classifying the breast lesions as benign cyst, benign solid
mass, or malignant solid mass. Detection of malignant solid masses
is our primary objective. A classification accuracy of 83% is obtained.
One hundred percent sensitivity is reported. It can be concluded that the
proposed fuzzy-based classification technique can be used as an aid for
the automated detection of breast lesions.
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The noninvasive methods used to diagnose breast cancer
have limitations. Currently, detection techniques are based

primarily on physical examination, mammography, sonography,
and magnetic resonance imaging. The most sensitive non-
invasive modality for detecting breast cancer is the magnetic
resonance imaging. The ultrasound has long been used
to distinguish between benign, fluid-filled cysts and solid
masses. However, solid masses are often not malignant. For
example, both fibroadenomas and scirrhous carcinomas are
solid and stiff, but only the latter are malignant. Results
show that, under small deformation conditions, the elastic
modulus of normal breast fat and fibroglandular tissues
are similar, whereas fibroadenomas are of approximately
twice the stiffness. A 3- to 6-fold increase in stiffness is exhib-
ited by fibrocystic disease and malignant tumors. A 13-fold
increase in stiffness is exhibited by high-grade invasive duc-
tal carcinoma when compared with fibroglandular tissue.1

The B-mode sonographic features for benign and malignant
lesions have been shown to overlap each other substantially.2

Imaging of dense breast tissue in mammography3 is also
difficult. These limitations of mammography and sonography

and the need, not to miss a malignant lesion in the early stage of
disease have lead to invasive surgical biopsy causing patient
discomfort, anxiety and hospitalization in addition to increas-
ing costs to the patient. This substantial problem in breast
cancer diagnosis remains. Elastography increases the specificity
in diagnosis and reduces the chance of interventional procedure
for a biopsy and should reduce patient discomfort associated
with mammography.

Elastography is a technique capable of producing ima-
ges of internal strain or young’s modulus of soft tissues. It
involves steps of obtaining ultrasonic scan of the target, sub-
jecting the target to a small mechanical compression and
obtaining a second scan of the same region. Radiofrequency
waveforms of the 2 scans received from a small segment of
tissue at a given depth are cross correlated to find the time
delay between the 2 waveforms. The time delay is related
to mechanical displacement of the tissue at a given depth.
The rate of change in tissue displacement as a function of
depth is known as strain. If the applied axial stresses are
known or assumed constant in the target, the strain values
are directly converted to elastic modulus values. The gray
levels on the resulting image will ultimately correspond to
tissue elasticity. This image is called an elastogram.4

Mechanical measurements have shown that patholo-
gical tissue can be up to 30 times stiffer than normal tissue.5

Ultrasound elastography is described as the method for mea-
suring the stiffness/elastic properties of tissues2,6Y8 by Ophir
et al.4,9,10 The comparison of spatial arrangement of tissue be-
fore and after compression is the basic operating principle
of elastography. This scanning modality, which can provide
information about stiffness of lesions, is being used for de-
tecting and identifying lesions in the breast currently. Paired
images, consisting of the standard B-mode image on the left
and a pure strain image on the right,11 are obtained.

Benign lesions usually appear smaller or of the same size
on sonograms as well as on elastograms. In case of malignant
lesions, the size seems larger on the elastogram.12,13 Benign
lesions tend to have smoother borders and are loosely bound
to adjacent tissue and are more mobile. Most malignant
tumors tend to form speculated margins, although some types of
malignant tumors could have smooth margins. It has therefore
been observed that during an applied compression, benign lesions
tend to undergo motion in an opposite direction to that of the
compression.14 On the other hand, malignant lesions move in
the direction of compression while pulling the perilesional
tissue in the same direction, thereby causing the perilesional
tissue also to appear stiffer on the elastogram as well. Stu-
dies have demonstrated that B-scan ultrasound imaging
tends to underestimate the size of a tumor compared with
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pathology measurement. The size of a breast tumor is larger
in elasticity images than in B-scan ultrasound images, and
it is a reasonable hypothesis that the tumor size in elastic-
ity images is a more accurate representation than that measured
at pathology.10

The breast is an ideal organ on which to perform elas-
tography because of the ease with which it can be compressed.
Elastography, which estimates tissue stiffness, may be an attrac-
tive tool for distinguishing benign from malignant lesions
because of the relative stiffness of breast cancer tissue as
compared with benign fibroadenomas and cysts.

In the diagnosis of breast cancer using elastography,
several diagnostic criteria, such as lesion visualization, relative
brightness, and margin irregularity by capturing the radio-
frequency data of the reflected echoes after giving compres-
sion to the lesion, have been proposed by Garra et al15 and Hall
et al.11 Instead of radiofrequency data, continuous ultrasound
images obtained through probe compression were used by
Steinberg et al16 and Moon and Chang.17

Automated detection of tumor margin in breast elasto-
graphy is desired for diagnostic purposes. A preliminary seg-
mentation algorithm using the coarse-to-fine active contour
method was proposed by Wu Liu et al.18 This method is ef-
fective for segmenting regions of images that have a relatively
regular, well-circumscribed single margin but might not be
effective in segmenting spiculated masses with irregular mar-
gins as seen in malignant tissue.

Xia’s method19 refers to contour evolution, which impro-
vises on the coarse-to-fine active contour method proposed by
Liu et al.18 This method can handle features that the active
contour method has difficulties with, including self intersect-
ing contours and changes in topology.

In this work, a fully automated fuzzy-based classifier to
diagnose breast lesions is proposed. Ultrasound and elasto-
graphy image pair of a breast lesion is acquired. The contours
of a breast lesion are evolved from the acquired image pair.
The lesion areas in ultrasound and elastography images are
segmented. Three sets of features, namely texture, strain, and
shape, are computed from the segmented lesion areas in
ultrasound and elastography images. A total of 17 features
are extracted from each image pair. Based on Student t test,
5 statistically significant features are selected. A fuzzy logic
system has been designed with these 5 features and a set of
rules. The fuzzy logic system is evaluated for the test images.
This proposed system is used to detect the type of lesion, namely,
benign cyst, benign solid mass, and malignant solid mass.

METHODOLOGY

Image Acquisition
This study is a retrospective analysis of stored images

and has no impact on the clinical management of the patients,
as all the patients have already been treated or undergone
treatment. The stored images used for the study were anon-
ymous. The ultrasound and elastography images of 40 biopsy
proven lesions were taken from the database. All images were
obtained on a Siemens ACUSONAntares scanner with a high-
frequency linear VF 7-3 MHz transducer from July 2007 to
March 2009.

Segmenting the Lesion
Because of noise and speckles in the ultrasound B-scan

and elastographic images, noise filtering and edge enhance-
ment are required. The image quality is significantly improved
by the SRAD filter20 while preserving the important boundary
information, and hence, in the present study, speckle-reducing
anisotropic diffusion filtering of real elastography and ultra-
sound B-scan images is done to reduce noise and speckles.

Segmentation is required to separate the tumor region
from its background. Segmentation algorithms for gray scale
images are based on one of the 2 basic properties of image
intensity values: discontinuity and similarity. In the first cate-
gory, the image is partitioned based on abrupt changes in the
intensity, such as edges in an image. In the second category, the
image is portioned into 2 regions that are similar according to
a set of predefined criteria.

In the present study, the ‘‘level set active contour
method’’21 based on the second criteria is used for segmen-
tation. Here, the initial contours of lesions of both ultrasound
and elastography images are determined by the method pro-
posed by Xia et al.19 In this method, shape and region infor-
mation are incorporated into the level set energy functions.
It is more robust than the method originally proposed by Osher
and Sethian.22

The following steps are involved in the automatic lesion
segmentation algorithm: (1) preprocessing of elastography and
ultrasound B scan images by SRAD filter16 to reduce noise
and speckles, (2) gray value thresholding23 of the pre-
processed image to obtain a binary image, (3) selecting a
binary mask from the image, and (5) applying level set algo-
rithm to segment the area of lesion. This algorithm has been
applied to both ultrasound B-scan and elastography images.
The segmentation results are shown in Figures 1 to 4. The
various stages of filtering and segmentation of US B-scan
images and elastograms of a malignant solid mass, benign
solid mass, and benign cysts are also shown in Figures 1 to 4.
The computed delineated margin is the white outline. Malig-
nant masses are stiffer and, therefore, deform less than benign
masses. They appear darker and larger than benign masses on
an elastogram. A benign lesion can appear significantly smaller
on an elastogram.13 A cyst is characterized by its inner anechoic
substance and thin echogenic outer wall. It is depicted as nidus
(bull’s eye appearance) in an elastogram (Fig. 4C). The bull’s
eye artifact has a posterior bright spot in addition to the cen-
tral white spot. Lesions other than cysts can have only the cen-
tral white spot.24

Feature Extraction
The automatic feature extraction methodology from

breast ultrasound and elastography images used in this work
has been described extensively elsewhere25 and will only be
briefly summarized here.

Based on the difference in size and shape of malignant,
benign and cystic lesions in elasticity images and B-scan ultra-
sound images,10,12,26 5 features were extracted for each com-
puter-determined lesion contour: area difference, perimeter
difference, contour difference, solidity, and width-to-height
ratio.27 Based on the fact that texture features represent changes
of gray level intensity, 6 second-order statistical features were
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FIGURE 1. A, Original ultrasound B mode image of malignant solid mass. B, Filtered image. C, Image after applying automatic
threshold Figure 1D. Final contour. E, Segmented tumor (ROI). F, Computer delineated margin of malignant solid mass
in an ultrasound B mode image.

FIGURE 2. A, Original elastogram of malignant solid mass. B, Filtered image. C, Image after applying automatic threshold.
D, Final contour. E, Segmented tumor (ROI). F, Computer delineated margin of malignant solid mass in an elastogram.
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computed for each computer-determined lesion contour from
the gray level co-occurrencematrix28: standard deviation, energy,
entropy, dissimilarity, homogeneity, and contrast.

The classification stage of the system, which uses these
features, is described in the following subsection.

Classifier
In this work, an approach based on fuzzy logic system

(FLS)29 has been used to classify the types of lesions. The
schematic of the proposed fuzzy based classifier is shown in
Figure 5. A fuzzy logic system (FLS) is an expert system,
which is computer based and that which emulates the rea-
soning process of a human expert within a specific domain of
knowledge. A FLS consists of 4 main modules: fuzzification
module, fuzzy rule base, fuzzy inference engine, and defuz-
zification module. Our proposed FLS used for classification of
breast lesions using ultrasound echography and elastography
consists of 5 inputs, namely, area difference, solidity, peri-
meter difference, energy and contrast, and one output namely
type of lesion. The schematic of the proposed FLS is shown in
Figure 6. The main issues involved in the system design are
as follows:
& A crisp set of the input and output variables and their range
of values are considered. For example, the range of input
linguistic variable solidity is between 0.2 and 0.8.

& A crisp set of the input and output variables are expressed
as fuzzy sets using linguistic variables, linguistic states,
and membership functions. This step is fuzzification. For

example, solidity is an input linguistic variable, which de-
scribes regularity of the lesion. Solidity is represented by
4 linguistic states or 4 degrees of membership, namely, lower,
low, high, and higher. Each linguistic state is represented by
a Gaussian membership function. Likewise, the other input
variables are fuzzy quantized. The output variable, namely,
type of lesion, is represented by 3 linguistic states or 3 degrees
of membership, namely, benign solid mass, malignant solid
mass, and benign cyst. These states are represented by fuzzy
sets with triangular membership function.

& The rules are constructed based on the description of the
input and output variables. The rules are stored in the fuzzy
rule base. For example, the variable area difference is used to
compare areas of lesions between 2 images (ultrasound
image and elastogram), as lesion area changes in accordance
to the applied pressure. The area difference is defined as the
difference between areas of lesions in the ultrasound images
and elastograms.

The feature solidity is used to describe the regularity
or shape of lesions. Benign solid mass usually have smooth
shapes, so they produce a regular shape in both ultrasound
and elastography images, whereas malignant solid mass pre-
sent irregular shapes in elastograms because of their solid
nature. Based on the description of area difference and solidity,
the rule reads: if area difference is highly negative or solidity is
lower, then type of lesion is malignant. Likewise, the other
4 rules are written.

FIGURE 3. A, Ultrasound image and elastogram of a benign solid mass. B, Computer delineated margin of benign solid mass
in ultrasound image. C, Computer delineated margin of benign solid mass in an elastogram.
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& The fuzzified measurements are used by the inference en-
gine to evaluate the set of rules. The membership functions
on the input variable, for example, solidity are applied to

their actual values to determine the degree of truth for rule
premise. This degree is referred to as its alpha value. The
alpha value of each rule is applied to the consequent of that

FIGURE 4. A, Ultrasound image and elastogram of a cystic lesion. B, Computer delineated margin of a cyst in an ultrasound
image. C, Computer delineated margin of a cyst in an elastogram.

FIGURE 5. Fuzzy-based classifier of breast lesions.
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rule. This results in one fuzzy set being assigned to output
variable of each rule. The various output fuzzy sets are
aggregated into a single fuzzy set. This step is called inference.

& The aggregate of a fuzzy set resulting from inference
encompasses a range of output values and is defuzzified to
obtain a final crisp output. This step is defuzzification. The
crisp output is the type of lesion (benign cyst, benign solid
mass, and malignant solid mass).

The fuzzy inference engine used in the proposed FLS
is shown in Figure 7. Tumor areas between ultrasound B mode
and elastography images are compared using area difference,
as tumor area changes according to the pressure exerted.17

Area difference is less for a malignant solid mass and high
for benign solid mass. The input variable area difference has
4 degrees of membership, namely, high positive, positive,
negative, and high negative. Regularity of a lesion is repre-
sented using solidity. Malignant solid mass with spiculated
margins have a low value of solidity and benign solid mass
with smooth borders have high value of solidity. The input
variable solidity has 4 degrees of membership, namely, high,
higher, low, and lower. Perimeters of lesions in B-scan and
strain images are compared using perimeter difference. Peri-
meter refers to the number of pixels in the boundary of lesions.
Perimeter difference is high for both benign lesions and cysts.
Energy is a measure of uniformity of intensity distribution or
orderliness in the lesion area. Contrast refers to local intensity
variations in the lesion area. Energy and contrast are higher for
a benign lesion when compared with a cyst. The input vari-
ables perimeter difference, energy, and contrast have 2 degrees
of membership, namely, low and high. The degrees of mem-
bership of the input variables are shown in Table 4. The fuzzy
rule base accommodates 5 rules. The output variable ‘‘type of
lesion’’ has 3 degrees of membership, namely, benign solid
mass, malignant solid mass, and benign cyst.

Rules
& If area difference is highly negative or solidity is lower, then
type of lesion is malignant solid mass.

& If area difference is highly positive or solidity is higher and,
contrast and energy are high, then the lesion is a benign cyst.

& If area difference, solidity, perimeter difference, energy, and
contrast are high, then the lesion is a benign cyst.

& If area difference is highly positive or solidity is higher
and contrast and energy are low, then the lesion is benign
solid mass.

& If the area difference, solidity, and perimeter difference are
high and energy and contrast are low, then the lesion is
benign solid mass.

Once the classifier is designed, it is evaluated using jack-
knife procedure. Fifty percent of the training set is used for
training, and the rest is used for testing such that there is no
overlap between data. The classification of lesion is done after
evaluating the classifier for the test images.

RESULTS AND DISCUSSION
This study is applicable to strain images. These images

have stiff areas, which seem black, whereas less stiff tis-
sue seems white. The above algorithm has been tested on
40 pairs of ultrasound and elastogram biopsy-proven images
wherein 11 are benign cyst, 16 are benign solid mass and

FIGURE 6. Fuzzy logic system.

FIGURE 7. Fuzzy inference engine.
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13 malignant solid mass. The gold standard here is that all
the images are biopsy proven.

Segmentation
The segmentation results are shown in Figures 1 to 4.

Figures 1A to F show the various stages of filtering and seg-
mentation of a US B-scan image of a malignant solid mass.
Figures 2AYF show the various stages of filtering and segmen-
tation of an elastogram of a malignant solid mass. Figures 3AYC
show the ultrasound image and elastogram of a benign solid
mass and their segmented images. Figures 4AYC show the
ultrasound image and elastogram of a cystic solid mass and
their segmented images. The computed delineated margin is
thewhite outline shown in Figures 1F, 2F, 3B, 3C; 4B, and 4C.

Feature Extraction
The features extracted are listed in Tables 1 to 3. Table 1

presents the texture features of malignant solid masses, benign
solid masses and benign cysts of a US B-scan image. Table 2
presents the texture features of malignant solid masses, benign
solid masses and benign cysts of an elastogram. Table 3 pres-
ents the strain and shape features obtained from parameters of
both US B-scan and elastography images.

Differences between the 6 values for elastogram and
ultrasound B-scan texture features and 5 strain/shape features
in benign, malignant and cystic lesions were evaluated using
the Student t test. For each analysis, a P G 0.05 was considered
to indicate a significant difference.

When the difference between the elastogram entropy
of a benign lesion and the elastogram entropy of a malignant
lesion was used to compare groups, the entropies for the group
with malignancy and that with benign nature were statistically
significantly different (P = 0.0012). With use of the same pa-
rameter, the mean value of the benign group was not statistically
significant from that of the group with cysts (P = 0.25567).

The entropies for themalignant group and groupwith cystswere
statistically significantly different (P = 0.022). Differences
between benign and malignant breast tumors were statistically
very significant for values of elastographic homogeneity (P =
0.0006). With use of the same parameter, the mean value of
the benign group was not statistically significant from that
of the group with cysts (P = 0.2839), although the mean values
of the malignant group with benign group were close to being
statistically significant (P = 0.0227). The difference between
malignant and cyst were statistically very significant for
values of elastographic dissimilarity (P = 0.005), although
the mean values of the malignant group with cystic group
were close to being statistically significant (P = 0.0244).
The difference between benign solid mass and malignant
solid mass, benign cyst and benign solid mass, malignant
solid mass and benign cyst were not statistically significant
for elastographic texture features energy, contrast, and SD.

The difference between benign and malignant, cyst and
benign, malignant and cyst were not statistically significant for
ultrasound B-scan texture features energy, entropy, homo-
geneity, and SD. The difference between malignant and cyst
were statistically significant for values of sonogram dissim-
ilarity (P = 0.05), and the difference between benign and cyst
were statistically significant for values of sonogram contrast
(P = 0.03).

The difference between malignant solid mass and benign
cyst were statistically very significant for values of solidity, the

TABLE 1. Texture Features of Ultrasound Image Showing
Range of Values
Features Benign Solid Mass Malignant Solid Mass Benign Cyst

Energy 10,000Y50,000 500Y10,000 7000Y43,000

Entropy j830 to j1290 j120 to j280 j2000 to j16,000

Dissimilarity 100Y500 40Y10,000 3000Y15,000

Homogeneity 30Y430 57Y78 300Y2000

Contrast 100 to 1000 150Y3000 450Y20,000

SD 20Y60 0.22Y1.0 0.6Y35

TABLE 2. Texture Features of Elastography Image Showing
Range of Values
Features Benign Solid Mass Malignant Solid Mass Benign Cyst

Energy 300Y1000 2000Y8000 3000Y20,000

Entropy j60 to j540 j300 to j500 j780 to j8000

Dissimilarity 3000Y4000 80Y1200 1300Y20,000

Homogeneity 52Y278 268Y530 160Y1000

Contrast 100 to 1000 90Y2500 430Y3000

SD 0.1Y0.25 0.7Y40 0.39Y0.84

TABLE 3. Strain and Shape Features From Ultrasound and
Elastography Images

Features
Benign Solid Mass
and Benign Cyst Malignant Solid Mass

Area difference 5Y100 j60 to j10000

Solidity 0.6Y0.8 0.2Y0.6

Perimeter difference 10Y100 100Y1000

Contour difference 7Y100 1Y10

Width-height ratio j40 to j150 15Y100

TABLE 4. Mean and Standard Deviation Values of FIS Inputs
From 40 Image Pairs
Name of the
Parameter

Membership
Functions Mean

Standard
Deviation

Area Difference High positive 57.77045 21.35105

Positive 14.30632 8.04699

Negative j47.7126 16.82579

High negative j2501.58 4143.39

Solidity High 0.621856 0.051623

Higher 0.918981 0.07354

Low 0.463416 0.027538

Lower 0.179155 0.144788

Perimeter Difference Low j240.01 540.1314

High 38.38749 31.74387

Energy Low 5529.455 1301.083

High 48685.88 66280.76

Contrast Low 2097.333 912.7351

High 8401.091 4928.523
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shape feature. (P = 0.004). The difference between malignant
and benign were statistically significant for values of solidity
(P = 0.016) and width-to-height difference (P = 0.023). Hence,
in conclusion, it is appropriate to combine the information
obtained from both US elastography and US B-scan images for
better diagnosis. The mean and SD values of membership
functions are listed in Table 4.

Classification
Forty sets of ultrasound B-scan images and elastograms

are used for testing, of which, 27 are benign (including 11 cysts
and 16 benign solid masses) and 13 are malignant lesions. Of the
13 malignant lesions, 13 lesions are detected (TP), and none is
not detected (FN). Of the 27 benign lesions, 20 are detected
(TN), and 6 are misinterpreted as malignant (FP) and one cyst as
benign. Table 5 lists the parameters of evaluation for the pro-
posed algorithm.

The performance analysis is listed in Table 6. A classifi-
cation accuracy of 83% is obtained. The sensitivity of classifier
in detecting malignant solid mass is 100%, and specificity in
detecting benign solid mass and benign cyst is 74%.

This algorithm works well for malignant solid mass but
fails for simple cysts. Most elastographic cysts have an an-
echoic and thin echoic portion. However, in certain cases of
cysts, it was possible to segment the anechoic portion only.
Texture, strain, and shape features are extracted from this
anechoic portion. However, these features were not repre-
sentative of simple cysts, which led to wrong classification.

CONCLUSIONS
In this proposed method, the 2 sets of images are initi-

ally preprocessed by anisotropic diffusion filtering and then
by an automatic threshold technique. The lesion is segmented
by the level set method in the combined image. The texture,
strain, and shape features are computed from the segmented
lesions. Some of the features are distinct in an elastogram for

the 3 specified conditions, and hence, elastogram increases
the specificity of diagnosis.

In the proposed method, the breast lesion is detected and
then classified using both ultrasound B-mode imaging and
elastogram. The cystic lesions are differentiated from benign
sold masses and malignancy. The proposed algorithm gives
higher accuracy in detecting malignant and benign solid masses
but yields less accuracy in classifying cyst. Cystic lesions have
almost the same characteristics as that of benign solid masses.
However, in certain cases of simple cysts, we were able to seg-
ment the anechoic portion only. Texture, strain, and shape fea-
tures are extracted from this anechoic portion. However, these
features were not representative of simple cysts, which led to
an incorrect classification.

If both anechoic and thin echoic portions of the simple
cyst are properly segmented out, the accuracy of classification
can be improved. In future, this will be done using other
segmentation techniques and it can be extended to identify the
types of malignancy of lesions.
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